Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties.

نویسندگان

  • Yulan Ren
  • Chunling Zhu
  • Shen Zhang
  • Chunyan Li
  • Yujin Chen
  • Peng Gao
  • Piaoping Yang
  • Qiuyun Ouyang
چکیده

We developed a new strategy, i.e., a seed-assisted method, to fabricate a three-dimensional (3D) SiO2@Fe3O4 core/shell nanorod array/graphene architecture. The fabrication processes involved deposition of β-FeOOH seeds on the graphene surfaces in the ferric nitrate aqueous solution, subsequent growth of β-FeOOH nanorod arrays on the graphene surfaces in the ferric chloride aqueous solution under hydrothermal conditions, deposition of SiO2 coating on the surfaces of β-FeOOH nanorods, and final formation of the 3D architecture by a thermal treatment process. Scanning electron microscopy and transmission electron microscopy measurements showed that the SiO2@Fe3O4 core/shell nanorods with a length and diameter of about 60 and 25 nm, respectively, were almost grown perpendicularly on both side surfaces of graphene sheets. The measured electromagnetic parameters showed that the 3D architecture exhibited excellent electromagnetic wave absorption properties, i.e., more than 99% of electromagnetic wave energy could be attenuated by the 3D architecture with an addition amount of only 20 wt% in the paraffin matrix. In addition, the growth mechanism of the 3D architecture was proposed, and thus, the strategy presented here could be used as a typical method to synthesize other 3D magnetic graphene nanostructures for extending their application areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

Synthesis and study of structural and magnetic properties of superparamagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications

Objective(s): This paper describes coating of magnetite nanoparticles (MNPs) with amorphous silica shells.   Materials and Methods: First, magnetite (Fe3O4) NPs were synthesized by co-precipitation method and then treated with stabilizer molecule of trisodium citrate to enhance their dispersibility. Afterwards, coating with silica was carried out via a sol-gel approach in which the electrostati...

متن کامل

Fe3O4/SiO2/CeO2 Core-Shell Magnetic Nanoparticles as Photocatalyst

The Fe3O4/CeO2 magnetic photocatalyst was prepared by coating directly onto the surface of magnetic Fe3O4 particles. However a direct contact of CeO2 onto the surface of magnetic Fe3O4 particles presented unfavorable heterojunction, thus the SiO2 barrier layer between magnetic Fe3O4 and CeO2 was prepared as a core-shell stucture to reduce the negative effect by combining three steps of the hydr...

متن کامل

Highly selective fluorescent chemosensor for Zn2+ derived from inorganic-organic hybrid magnetic core/shell Fe3O4@SiO2 nanoparticles

Magnetic nanoparticles with attractive optical properties have been proposed for applications in such areas as separation and magnetic resonance imaging. In this paper, a simple and novel fluorescent sensor of Zn2+ was designed with 3,5-di-tert-butyl-2-hydroxybenzaldehyde [DTH] covalently grafted onto the surface of magnetic core/shell Fe3O4@SiO2 nanoparticles [NPs] (DTH-Fe3O4@SiO2 NPs) using t...

متن کامل

Facile Synthesis and Spectroscopic Studies of SiO2-Core/ZnS-Shell Nanostructure

SiO2/ZnS core/shell nanostructures have been synthesized at room temperature by a simple wet chemical method. The prepared materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), UV–vis spectroscopic and transmission electron microscopy (TEM) studies. X-ray diffraction pattern exhibits peaks correspond to the cubic phase of ZnS. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 24  شماره 

صفحات  -

تاریخ انتشار 2013